Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy.
نویسندگان
چکیده
The hydrated dielectron is a highly correlated, two-electron, solvent-supported state consisting of two spin-paired electrons confined to a single cavity in liquid water. Although dielectrons have been predicted to exist theoretically and have been used to explain the lack of ionic strength effect in the bimolecular reaction kinetics of hydrated electrons, they have not yet been observed directly. In this paper, we use the extensive nonadiabatic mixed quantum/classical excited-state molecular dynamics simulations from the previous paper to calculate the transient spectroscopy of hydrated dielectrons. Because our simulations use full configuration interaction (CI) to determine the ground and excited state two-electron wave functions at every instant, our nonequilibrium simulations allow us to compute the absorption, stimulated emission (SE), and bleach spectroscopic signals of both singlet and triplet dielectrons following excitation by ultraviolet light. Excited singlet dielectrons are predicted to display strong SE in the mid infrared and a transient absorption in the near-infrared. The near-infrared transient absorption of the singlet dielectron, which occurs near the peak of the (single) hydrated electron's equilibrium absorption, arises because the two electrons tend to separate in the excited state. In contrast, excitation of the hydrated electron gives a bleach signal in this wavelength region. Thus, our calculations suggest a clear pump-probe spectroscopic signature that may be used in the laboratory to distinguish hydrated singlet dielectrons from hydrated electrons: By choosing an excitation energy that is to the blue of the peak of the hydrated electron's absorption spectrum and probing near the maximum of the single electron's absorption, the single electron's transient bleach signal should shrink or even turn into a net absorption as sample conditions are varied to produce more dielectrons.
منابع مشابه
Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
The hydrated dielectron is composed of two excess electrons dissolved in liquid water that occupy a single cavity; in both its singlet and triplet spin states there is a significant exchange interaction so the two electrons cannot be considered to be independent. In this paper and the following paper,we present the results of mixed quantum/classical molecular dynamics simulations of the nonadia...
متن کاملFull configuration interaction computer simulation study of the thermodynamic and kinetic stability of hydrated dielectrons.
The hydrated electron is a unique solvent-supported state comprised of an excess electron that is confined to a cavity by the surrounding water. Theoretical studies have suggested that two-electron solvent-supported states also can be formed; in particular, simulations indicate that two excess electrons could pair up and occupy a single cavity, forming a so-called hydrated dielectron. Although ...
متن کاملEfficient real-space configuration-interaction method for the simulation of multielectron mixed quantum and classical nonadiabatic molecular dynamics in the condensed phase
We introduce an efficient configuration interaction ~CI! method for the calculation of mixed quantum and classical nonadiabatic molecular dynamics for multiple electrons. For any given realization of the classical degrees of freedom ~e.g., a solvent!, the method uses a novel real-space quadrature to efficiently compute the Coulomb and exchange interactions between electrons. We also introduce a...
متن کاملDynamics of electron solvation in molecular clusters.
Solvated electrons, and hydrated electrons in particular, are important species in condensed phase chemistry, physics, and biology. Many studies have examined the formation mechanism, reactivity, spectroscopy, and dynamics of electrons in aqueous solution and other solvents, leading to a fundamental understanding of the electron-solvent interaction. However, key aspects of solvated electrons re...
متن کاملTime-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment.
We use nonadiabatic mixed quantum/classical molecular dynamics to simulate recent time-resolved photoelectron spectroscopy (TRPES) experiments on the hydrated electron, and compare the results for both a cavity and a noncavity simulation model to experiment. We find that cavity-model hydrated electrons show an "adiabatic" relaxation mechanism, with ground-state cooling that is fast on the time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 19 شماره
صفحات -
تاریخ انتشار 2006